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Abstract
Quantitative knowledge of river discharge measurements is essential for understanding coastal and estuarine dynamics and 
salinity variations. However, direct measurements are scarce for a large portion of rivers in Brazil. In this study, five sim-
ple models based on remote sensing and local rainfall datasets (MERGE) for the Ribeira de Iguape catchment are used to 
estimate the Valo Grande Channel (VGC) discharge on the southeastern coast of Brazil. These models use linear, quadratic, 
exponential, and two different multiple linear regression methods. The predicted VGC discharge time series resulting from 
each model is compared with the estimated time series based on in situ data from the Water and Electric Energy Department 
(DAEE in Portuguese). The estimated time series presented reasonable results, with skills varying from 0.84 to 0.92 and 
Nash–Sutcliffe efficiency (NSE) indices varying from 0.54 to 0.75, with the highest values corresponding to the multiple 
linear regression models. This methodology allowed us to reproduce longer time series at a daily frequency, as well as 
monthly averages between 2000 and 2020.

1  Introduction

The lack of measured river runoff data is evident in Brazil, 
and this deficiency imposes considerable limitations on the 
reliability of prediction systems, especially when studying 
estuarine regions. This kind of information is essential for 
constructing and calibrating numerical models for oceanic 
predictions (Marta-Almeida et al. 2021). As an example, 
an important effort was made by Carvalho et al. (2018) to 
construct a monthly climatology dataset of river discharges 
along the Brazilian continental shelf. These authors advised 
that future studies should focus on individual shelf regions, 
since near-real-time runoff data are still very rare and, when 
implemented, do not provide information for long periods 
of time.

The water volume received by a watershed and, there-
fore, the river runoff depends on the climatic conditions; soil 
characteristics; vegetation coverage; human, agricultural, 
and industrial activities; evapotranspiration in the capture 
region; and the interactions between these factors and other 
factors (Coleman and Wright 1971). When rainfall water 

does not infiltrate into the soil and runs across the land sur-
face, it results in runoff through streams, rivers, lakes, or 
reservoirs (Perlman 2016). Surface runoff is a leading pro-
cess in the hydrological cycle that connects precipitation to 
surface reservoirs (Sitterson et al. 2018). River flows balance 
the hydrological cycle by returning excess rainfall to the 
oceans and regulating how much freshwater flows through 
catchments (Sitterson et al. 2018). Runoff data are relevant 
for monitoring water resources and solving water quality and 
quantity problems such as flood forecasting and ecological 
and biological relationships within watersheds (Kokkonen 
et al. 2001). River discharge is also the main controller of 
contaminant dispersion and transport due to excessive nutri-
ents and pesticides from agricultural lands being washed 
through catchments during rainy periods (Sitterson et al. 
2018). The acquisition of runoff data can help water resource 
managers account for pollution in water resources (Sitterson 
et al. 2018).

In Brazil, river runoff is usually determined once a day 
at monitoring stations with linimetric measurements (rela-
tive height from sea level), which are converted to discharge 
amounts using a calibration curve. In rivers that flow into 
the sea, this monitoring work is carried out upstream of the 
headwaters of the estuary, where the movement is unidi-
rectional and tides do not interfere with river flow. Other 
direct measurement methods can also be employed for this 
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purpose, such as the use of current data, the discharge of 
known effluents in a partial area of the water basin, or the 
use of semiempirical equations to determine discharge. All 
these methods have been thoroughly explained in past litera-
ture, for instance, in Miranda et al. (2012).

However, due to the lack of discharge data, modeling 
serves as an important method for predicting river discharge 
from rainfall data. Accurately representing rainfall both spa-
tially and temporally is important for rainfall-runoff mod-
eling, as rainfall is commonly one of the main model inputs 
(Faurès et al. 1995). In terms of their spatial structures, 
catchment processes in rainfall-runoff models can be divided 
into lumped, semidistributed, and fully distributed processes 
(Sitterson et al. 2018). Spatial variability is not considered in 
the outputs of lumped models, while semidistributed mod-
els reflect some spatial variability. Fully distributed models 
process spatial variability and generate runoff for each grid 
cell (Sitterson et al. 2018). In terms of the model structure, 
rainfall-runoff models may be classified into physically 
based, conceptual, and empirical models (Devia et al. 2015; 
Sitterson et  al. 2018). Physically based models include 
explicit physical mechanisms involved in the hydrological 
cycle but are limited by the meteorological input data, high 
computational costs, and calibration challenges (Wood et al. 
2011). These models are also limited by the need for a large 
number of parameters and are site-specific (Sitterson et al. 
2018). Conceptual models are based on simplified equations 
that represent the water storage in a given catchment and do 
not consider spatial variability within the catchment (Sit-
terson et al. 2018). Empirical models usually consider the 
nonlinear relationships between inputs and outputs within 
a black-box concept. The best application of these mod-
els is in catchments with a lack of data, with runoff being 
the only required output. Such models can present highly 
accurate predictions with rapid run times (Sitterson et al. 
2018). Some examples of these models include the regres-
sion equations and machine learning models involved in 
artificial and deep neural networks (Devia et al. 2015; Sit-
terson et al. 2018), and Artificial Neural Networks (ANNs), 
Fuzzy Logic, and Genetic Algorithm (GA) (Dwarakish and 
Ganasri, 2015). Empirical relationships were also used to 
estimate river discharge from satellite data in the Yangtze 
River (China) (Sichangi et al. 2018), and from precipitation 
and temperature data in the Colorado River (USA) (Vano 
and Lettenmaier 2014).

As worldwide examples, we can cite some rainfall-
runoff models, such as the conceptual and semidistributed 
TOPMODEL (Topography Based Hydrological Model) 
(Devia et al. 2015) and HBV (Hydrologiska Byrans Vat-
tenavdelning) (Bergstrom 1976; Devia et al. 2015) models 
and the complex physically based SWAT (Soil and Water 
Assessment Tool) and MIKE SHE (Systeme Hydrologique 
European) models (Devia et  al. 2015). The MGB-IPH 

rainfall-runoff model (Collischonn 2007) has been used for 
large-scale basins in South America (Allasia et al. 2006). 
When comparing the model results with the data collected 
at riverine gauging stations in the Taquari-Antas basin, Col-
lischonn et al. (2007) found Nash–Sutcliffe efficiency (NSE) 
coefficient values varying from 0.40 to 0.84. The FFBP rain-
fall-runoff empirical model was applied in the Liebien River 
(Taiwan) presenting a R2 score value of 0.97 (Chen et al. 
2013). Najafi and Moradkhani (2016) used model combina-
tions with empirical relationships to forecast the discharge of 
four rivers and obtained NSE coefficient values varying from 
0.50 to 0.96. A comparison between three empirical models 
was made by Belvederesi et al. (2020), including a regres-
sion model, for which the authors obtained NSE values from 
0.65 to 0.78. Three empirical models were also applied by 
Sahoo et al. (2019) to forecast low flows in three stations in 
the Mahanadi river basin (India). The authors obtained NSE 
coefficient values from 0.56 to 0.97, depending on the region 
and model. The NSE coefficient measures the efficiency E 
proposed by Nash and Sutcliffe (1970) as one minus the sum 
of the absolute squared difference between the modeled and 
observed values normalized by the variance of the observed 
values during the investigated period. Model simulations 
can be judged as satisfactory if the NSE value is higher than 
0.50 (Moriasi et al., 2007).

In Brazil, the Storm Water Management Model (SWMM) 
(Rossman et al. 2010) has been applied for the drainage 
area of Belo Horizonte, Minas Gerais, producing an aver-
age Nash–Sutcliffe coefficient of 0.72 (Rosa et al. 2020). 
The performance of the SWMM was good, but its applica-
tion required not only rainfall data but also the topographic 
data and land use map of the region and was thus a much 
more complex model than the empirical model that uses only 
rainfall data as the input. Another example is the probabil-
ity-distributed model (PDM, Moore 2007), which has been 
applied to 5 basins in the southeastern region of Brazil. The 
input data required for this model are rainfall and potential 
evapotranspiration, and the model uses a specific and com-
plex formulation.

The majority of the models exemplified above use addi-
tional physical parameters beyond rainfall as inputs and are 
therefore considered complex, as they take into account the 
hydrological processes of the studied catchment. Here, we 
propose the application of regression equations in our mod-
els, using rainfall as the single input with the objective of 
obtaining runoff. We apply these regression models to an 
important estuarine region with scarce freshwater discharge 
measurements along the Brazilian coast: the Cananéia-
Iguape estuarine lagoon system (CIELS, hereafter).

The CIELS spreads for more than 70 km along the coast 
of the state of São Paulo, hosts relatively large popula-
tions of cetaceans (Santos and Rosso 2007; Geise et al. 
1999; Filla et al. 2012) and fishes (Barcellini et al. 2013, 
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Curcho et al. 2009), and is a reproduction area for sev-
eral other organisms (Barioto et al. 2017; Stanski et al. 
2018; Bochini et al. 2019; Galvão et al. 2000). However, 
considering the ecological importance of this system, the 
freshwater runoff of the Valo Grande Channel (VGC), the 
main freshwater source for the CIELS, has been poorly 
measured over time. As an example of runoff measure-
ments obtained in the CIELS, Bérgamo (2000) presented 
monthly discharge estimates using the river input data 
from the drainage basins of the Ribeira de Iguape River 
and next to Cananéia. The author concluded that the sea-
sonal freshwater variations in the systems of both drain-
age basins followed the seasonal fluctuations in rainfall 
in the region. Additionally, in 1955 and 1965, the cur-
rents in the VGC and the hourly instantaneous discharge 
in a complete tidal cycle (12h25) were measured (GEO-
BRÁS 1966). Estimates of the average daily discharge of 
the VGC region in a 12-year period (1954 to 1965) were 
also produced based on discharge data collected from the 
Três Barras station along Ribeira de Iguape River, located 
upstream of the VGC (GEOBRÁS 1966).

In the present study, rainfall data are applied as the 
unique fully distributed inputs from the Ribeira de Iguape 
watershed in empirical and simplified statistical models to 
estimate the lumped time-series discharge of the VGC. A 
particular advantage of these statistical models is that lim-
ited hydrological data (except rainfall and runoff data) are 
demanded without considering the other physical variables 
representing the hydrological process of the studied catch-
ment, such as topography, land use maps, or evaporation.

The scientific question addressed herein is as follows: 
what is the performance of a simple statistical model based 
on rainfall in predicting the discharge of a water basin? 
We hypothesize that simple statistical models that use 
the rainfall data from MERGE, which combines satellite-
derived and local precipitation data, are capable of gen-
erating daily discharge time series with a good accuracy. 
Such detailed runoff outputs would improve the quality 
of CIELS numerical simulations aiming to reproduce its 
physical characteristics, such as currents and salinity, and 
would have application potential for other estuarine sys-
tems, as well as supporting other research subjects with 
this essential information. The model results can also sup-
port decision-making in the areas of water resource plan-
ning and management. In addition, these results can assist 
urban planners and managers in undertaking the necessary 
measures to address extreme high-flow predictions.

In the next section, we describe the main physical char-
acteristics of the CIELS, followed by a description of the 
methodology in Section 2. The results and discussion are 
explained in Sections 3 and 4, respectively, and we present 
the conclusion in Section 5.

1.1 � Study area

The Ribeira de Iguape watershed, the main contributor to the 
VGC, occupies the southeastern portion of São Paulo state 
and the eastern portion of Paraná state between the latitudes 
of 23°50′ and 25°30′ S and longitudes of 46°50′ and 50° 
00′ W. Currently, the Ribeira de Iguape basin is an unhin-
dered catchment with no constructed dams (CBH-RB 2008; 
IBAMA 2016). The catchment covers a total area of 24.980 
km2 inside São Paulo and Paraná states (DAEE 1998). In the 
Iguape region, part of the discharge of the Ribeira de Iguape 
River is diverted to Mar Pequeno through the VGC, which is 
an artificial connection constructed between 1828 and 1830 
(Moraes 1997). The channel originally presented a width of 
approximately 5 m, but erosion over time has enlarged it to 
a 250-m width.

The southern coast of the São Paulo climate is defined 
as tropical and humid with rainfall related to the seasons, 
with wet summers and dry winters (Ma et al. 2011). This 
region is influenced by the South Atlantic Convergence 
Zone (ZCAS), which is a semipermanent feature charac-
terized by a NW–SE-oriented band of condensation and 
nebulosity (Satyamurti et al. 1998). This feature is respon-
sible for most of the precipitation in South America during 
summertime (Ma et al. 2011) and can occur in the Ribeira 
de Iguape watershed region. The passage of cold front sys-
tems also influences the precipitation regime in this area, 
mostly occurring during wintertime (Stech and Lorenzetti 
1992). Frontal systems associated with precipitation lead to 
the absence of a true dry season in the region, generating 
relatively well-distributed precipitation throughout the year, 
with the highest and lowest rainfall measured in summer 
and winter, respectively (GEOBRÁS 1966). The seasonal 
rainfall variability in southeastern Brazil can cause negative 
environmental, social, and economic impacts due to anoma-
lous precipitation and water availability (Zhang et al. 2018). 
During 2014 and 2015, this region suffered one of the most 
severe droughts since 1960, leading to insufficient hydro-
electric power generation throughout the entire country and 
the depletion of water reservoirs in the metropolitan region 
of São Paulo (Zhang et al. 2018).

In the Iguape region, relative humidity presents values 
greater than 70% throughout the year, with an annual mean 
rainfall of 1555 mm (GEOBRÁS 1966). In the Cananéia-
Iguape estuary, the annual average precipitation is 2200 mm, 
with a maximum monthly average precipitation of 266.9 mm 
occurring between January and March (Oliveira et al. 2009) 
and a minimum monthly average precipitation of 95.3 mm 
occurring in July and August (Oliveira et al. 2009).

The Ribeira de Iguape River is the main tributary dis-
charging freshwater into the VGC (Afonso 2006; Marta-
Almeida et al. 2021). The freshwater discharge of this river 
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presented daily mean values between 84 and 1.601 m3 s-1 
from 1954 to 1965 (GEOBRÁS 1966). The monthly mean 
discharge values in the VGC range from 240 m3 s-1 in August 
to 550 m3 s-1 in February (Ambrosio 2016).

2 � Methods

2.1 � A daily precipitation dataset: MERGE

To evaluate the VGC discharge, we used the MERGE precip-
itation dataset (Rozante et al. 2010). This dataset is produced 
and distributed in Brazil by the Center for Weather Forecast-
ing and Climate Studies (CPTEC) at the National Institute 
for Space Research (INPE). MERGE applies a Barnes objec-
tive analysis (Barnes 1973), combining data from meteoro-
logical stations distributed over the Brazilian territory and 
satellite precipitation data (Rozante et al. 2010). The daily 
rainfall data from MERGE used in this study have a spatial 
resolution of 0.1° in the Ribeira do Iguape watershed (Fig. 2) 
and span the period from June 2000 to December 2020. The 
watershed comprises 224 MERGE grid points (Fig. 2).

2.2 � Valo Grande Channel discharge estimate

The Três Barras mouth (Fig. 1) is the location where the 
Ribeira de Iguape River bifurcates in the VGC and continues 
to flow through the other branch. The VGC total discharge 
results from approximately 75% of the total contribution 
of the Três Barras mouth (GEOBRÁS 1966), correspond-
ing to approximately 95.6% of the main drainage repre-
sented by the discharge of three main affluents, namely, the 
Jacupiranga, Ribeira do Iguape, and Pariquera-Açu rivers 
(Fig. 1).

To estimate the VGC discharge and to train and evaluate 
the statistical models (Section 2.3), we applied a series of 
approximations to represent the best possible estimates with-
out direct measurements. Data from the Water and Electric 
Energy Department (DAEE in Portuguese) database col-
lected from 2011 to 2019 were used, representing the most 
recent available measurements of the Jacupiranga (QJ) and 
Ribeira do Iguape (QR) fluviometric stations (Fig. 1) dis-
charges. Gaps in the time series ranged from 2 to 5 days and 
were filled using linear interpolation. It is important to men-
tion that QR was measured in the city of Registro (Fig. 1), 
which is located approximately 70 km from the connection 
to the Três Barras mouth, resulting in a lag of approximately 
36 h between the measurements taken at Registro and at this 
location (Pisetta 2006; Pisetta 2010). As the discharge data 
at the fluviometric station are daily means, we assumed that 
the Ribeira de Iguape River discharge values (QR) corre-
sponded to the measurements obtained on the previous day 
at the Jacupiranga River (QJ) to calculate the Três Barras 

discharge (QTB). This same method was applied by Pisetta 
(2006, 2010), thus introducing a 24-h lag. As an example, for 
the calculation of QTB on 14 April, we used discharge val-
ues from 13 April for QR and from 14 April for QJ. Finally, 
we estimated the Pariquera-Açú River discharge (QPA) by 
adding 10% of the Jacupiranga River discharge, which, on 
average, corresponded with the measurements well (GEO-
BRÁS 1966).

QTB was computed using the following equation, which 
includes all three discharge measurements:

Notably, QPA is embedded in the QJ coefficient.
Since the VGC discharge is approximately 75% of QTB, 

we estimated the Valo Grande artificial channel discharge 
(QVGC) as follows:

2.3 � Models

Five different models were implemented: linear regression, 
quadratic regression, exponential regression, and two dis-
tinct multiple linear regression (MLR) models. These mod-
els were developed using the Python scikit-learn library 
(Pedregosa et  al. 2011) by applying the ordinary least 
squares (OLS) linear regression method.

We randomly trained the models using 67% of the 
rainfall data from MERGE and the VGC discharge data 
as our training subsets. The other portion (33%) was 
used as the test subset to validate these models. Dur-
ing the training stage, we shuffled the dataset input to 
each model 2000 times and selected the moment where 
the root mean squared error (RMSE) was minimized. In 
these cases, the shuffling ranged from 0 to 2000, and 
the minimum RMSE was achieved at 1506 shuffling 
times for the linear, quadratic, and exponential mod-
els. This method was utilized to obtain a set containing 
67% of the total time series that presented the minimum 
error possible. This is inspired in standard procedure 
of more advanced machine learning models, where the 
training algorithm adjusts a model coefficient by iterat-
ing repeatedly the training dataset through the model. 
The improvement comes from reducing the loss values 
over the iterations, due to improved coefficient values. 
Since we cannot readjust a multiple linear regression by 
retraining the algorithm, we instead shuffled the training 
dataset in a reproducible way in order to get a training 
dataset that provides a model with good performance in 
both training and test data. As both evaluations had simi-
lar skill, we can affirm the model produces good results 
without overfitting.

QTB = QR + 1.1 QJ

QVGC = 0.75 QTB
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After splitting the data into training and validation por-
tions, the data were linearized using the corresponding meth-
ods in the quadratic and exponential models. For the lineari-
zation of these models, we fitted the 67% training portion 
of the VGC discharge data into quadratic and exponential 
functions using the root-mean square and log, respectively. 
This process generated transformed VGC discharge values 
as outputs, which were then used for the linear regression.

The RMSE, skill (Willmott 1981), and coefficient of 
determination (CD) (or R2 score) were computed for the 
models. We used the test subset and observed VGC dis-
charge values to calculate these parameters, and from now 
on, we will call this process the test subset validation step. 
The CD is the percentage of variation that is described by 
the linear regression line. This term represents the propor-
tion of variation in the dependent variable (discharge) that 

Fig. 1   (a) Topography of the study area, including the Ribeira de Iguape watershed boundary (blue contour). The thin red lines represent the riv-
ers in the region. (b) Magnified view of the Valo Grande Channel region. The coastline is presented with a black line
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is predictable from the independent variables (rainfall data 
points from MERGE) and is defined as follows:

where SEline is the total squared error between the data 
points and the line fitted by the linear regression model, 
representing the distance between the data and regression 
line, and SEd is the total variation in the predicted discharge. 
The CD value varies from 0 to 1, where 1 indicates a perfect 
fit of the model with the data.

For the linear, quadratic, and exponential regression 
models, the VGC discharge was estimated as a function of 
the average rainfall (R) over the area and can be expressed 
as follows:

CD = 1 −
(

SEline∕SEd

)

QVGC = a + b ∗ R (linear)

QVGC = a ∗ eb ∗ R (exponential)

QVGC = a + b ∗ (R)2 (quadratic)

where a is an offset or a constant linear coefficient and b is 
the linear, quadratic, or exponential coefficient, depending 
on the model, determined by the least square fitting method 
mentioned above.

The rainfall (R) values used in the linear, quadratic, and 
exponential models were computed as follows:

where n is the number of grid points (224) from MERGE 
and R nFT is the accumulated rainfall over a specific and fixed 
period of time on each grid point. This time was chosen 
based on the maximum correlation found between accumu-
lated precipitation and runoff, as shown in Section 3.1.

The other two models, which are classified as MLR mod-
els, predict the value of one dependent variable based on two 
or more independent variables (Shoaib et al. 2018). In these 
models, we used the 224 grid points of accumulated rainfall 
from the MERGE dataset and treated them as independent 
variables. They cover the entire Ribeira de Iguape watershed 
area (Fig. 2). Each pixel (or grid point) is associated with 

R =
(

∑224

n=1
RnFT

)

∕n

Fig. 2   Mean rainfall data available from each MERGE cell, totalizing 224 grid points, from June 2000 to December 2020 for the Ribeira do 
Iguape watershed. The blue contour line indicates the watershed boundaries and the magenta star indicates the VGC location
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a time series of rain, which was considered as a variable 
in the multiple linear regression model. Spatial grid points 
with missing values were removed. We considered two MLR 
models for comparison. The first one considered the accu-
mulated rainfall in a fixed period of time for every grid point 
(RFT) according to the highest correlation found between the 
spatial-mean MERGE rainfall value and the VGC discharge. 
In this case, the equation used to predict the VGC discharge 
is given as follows:

Note that, unlike the linear model, which has a single 
linear coefficient for the whole domain, in this model, each 
grid point has a specific linear coefficient (bn). However, 
the period of time over which the accumulated rainfall was 
computed was the same for every grid point. This specific 
time was the same as that applied for the first three models, 
as presented in Section 3.1.

The second MLR model was very similar to the first but 
also considered a different period of time to compute the 
accumulated rainfall at each grid point, also based on the 
highest correlation obtained between the rainfall and dis-
charge at each grid point. In this case, the equation used to 
estimate the VGC discharge is given as follows:

where RVT (to avoid confusion with RFT) is the accumulated 
rainfall at each grid point computed in different time periods. 
These specific time periods were chosen according to the 
maximum correlation between the accumulated rainfall and 
runoff and are presented in Fig. 6.

The minimum RMSEs were achieved at shuffling times 
equal to 736 and 1513 for the MLR models using RFT and 
RVT, respectively. For the multiple regression models, we 
also applied the statsmodel library (Seabold et al. 2010) to 
obtain the spatial distributions of the correlation, p-value, 
and standard error associated with the OLS method. The 
standard error represents the average distance that the 
observed values fall from the regression line. The p-value 
is a measurement of how likely a coefficient is to be calcu-
lated through our model by chance (McAleer 2020). For 
example, a p-value of 0.378 indicates that there is a 37.8% 
chance that the independent variable (rainfall) has no effect 
on the dependent variable (VGC discharge), and our results 
are produced by chance.

To quantitatively compare the MERGE rainfall data with 
the DAEE discharge data and generate the model analysis 
results, we transformed the MERGE data from their origi-
nal unit, kg m-² day-1, to m3 s-1 (the same unit used for the 
discharge data). We converted the unit of rainfall MERGE 

QVGC = a +
∑224

n=1

(

bn ∗ RFT n
)

QVGC = a +
∑224

n=1

(

bn ∗ RVT n
)

data considering the area of the MERGE grid cells and a 
complete day (24 h, which was converted to seconds), so we 
multiplied it by the grid cell area and divided it by the water 
density, equal to 1000 kg m-³.

We obtained the predicted VGC discharge time series 
from each of the models. Then, we compared these predic-
tions with the time series estimated based on data collected 
from DAEE using the method proposed by GEOBRÁS 
(1966) and described in Section 2.2. This process, defined 
here as the time series validation process, compares the 
modeled and observed VGC discharge time series by cal-
culating the skill score, RMSE, CD, Pearson’s correlation 
coefficient, and Nash–Sutcliffe efficiency (NSE) index (Nash 
and Sutcliffe 1970).

In general, the MERGE rainfall data is organized in a 
set of grid cells covering the Ribeira de Iguape watershed 
which drains to the Valo Grande channel and then into the 
South Atlantic Ocean. The methodology assigns each grid 
point as an independent variable in the multiple regression 
model, with the discharge estimated at the mouth of the 
VGC from combined estimates of discharge at three riv-
ers located inland—the Jacupiranga, the Ribeira de Iquape, 
and the Pariquera-Acu rivers. The regression coefficients 
developed for each grid point assign the fraction of discharge 
at the VGC associated with that grid cell, thus providing 
a model of the VGC discharge, the main tributary of the 
studied watershed.

This study demonstrates a method that uses distributed 
rainfall data to predict the Valo Grande channel discharge, 
which has limited river gauge information. Considering the 
same period of MERGE data, there were two considerable 
gaps in QR available data, the first from 2000 to 2003 and 
the second from 2006 to 2010, showing that missing data is 
recurrent for river discharge in the region. Consequently, our 
QVGC estimate started in 2011. The main goal of our analysis 
was to provide a complete time series of river discharge esti-
mation for the Valo Grande channel covering possible gaps 
and scarcity of river discharge data. In order to accomplish 
this goal, we used a free and time continuous (from 2000) 
available rainfall data product (MERGE).

3 � Results

3.1 � Accumulated rainfall (R)

The accumulated rainfall (R) is defined as the sum of precip-
itation over a given period and a given area. R7 is presented 
here as the accumulated rainfall over 7 days, as this term 
presented the maximum correlation with the discharge data 
in the correlation analysis, as explained above. Henceforth, 
R7 corresponds to the accumulated rainfall fixed on time 
(RFT). Figure 3 shows the time series of discharge and R7. 
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This quantity presents a correlation of 0.735 and p-value < 
0.01 with the discharge data estimated for the Valo Grande 
Channel using the method described in Section 2.2 (Fig. S1, 
available in the Electronic Supplementary Material).

The river discharge peaks coincided with the rainfall 
peaks, indicating the influence of rainfall in modulating 
discharge (Fig. 3). For instance, intense rainfall occurred 
at the beginning of 2011, reaching rates over 10,000 m3 
s-1 before decreasing progressively until June. This same 
pattern was observed in the VGC discharge, with a peak 
flux of almost 1200 m3 s-1 at the beginning of 2011 and 
a decreasing flux until the end of June. Interestingly, all 
rainfall peaks approximately coincided with the river dis-
charge peaks, showing the coherence between the two 
datasets.

3.2 � Regression models

In this section, we present the model results. We focus on 
the MLR models, as they were considerably more reliable 
than the linear, quadratic, and exponential models. Details 
about the statistical differences among these models are 

presented in Section 3.3, and the scientific reasons and 
explanation of these differences are presented in Sec-
tion 4. The detailed results of the linear, quadratic, and 
exponential models are available in the Electronic Sup-
plementary Material (Figs. S2 and S3).

3.2.1 � Multiple linear regression models

We present two different MLR models. As we found the 
highest correlation between discharge and accumulated rain-
fall in 7 days (R7), in the first multiple regression model, we 
used MERGE R7. In the second one, we used the accumu-
lated rainfall varying in time (RVT), depending on the highest 
correlation for each grid cell of MERGE.

The multiple regression model using R7 resulted in mini-
mum, maximum, and mean standard errors of 0.003, 0.064, 
and 0.009, respectively. In 99% of the MERGE grid cells, the 
standard errors were lower than 0.03, except in the three grid 
cells in the southern region of the catchment (Fig. S4-a). 
In general, the errors associated with the regression results 
were low in almost the entire domain. The p-values were 
lower than 0.05 for 28% of the grid points (63 grid points of 
224 in total) (Fig. S4 -b).

Fig. 3   R7 (in orange) and dis-
charge series for Valo Grande 
(in blue) estimated by the GEO-
BRÁS (1966) method. Note that 
the precipitation time series is 
vertically inverted

Fig. 4   VGC discharge results of 
the multiple regression models 
using R7 (a) and RVT (b) for 
the test subset validation. The 
red lines show the perfect fit 
between the model results and 
data
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The black circles in Fig. 4 represent each value included 
in the test subset validation of the multiple regression mod-
els using R7 (Fig. 4a) and RVT (Fig. 4b). The multiple regres-
sion model using R7 presented a skill of 0.91, R² score equal 
to 0.71, and RMSE of 107.05 m3 s-1 (Fig. 4a). The multiple 
regression model with RVT presented a skill of 0.91, CD of 
0.70, and RMSE of 104.34 m3 s-1 (Fig. 4b). The validation 
of the models showed that both R7 and RVT were able to 
reproduce the discharge data considerably well for both low 
and high values (Fig. 4a and b, respectively).

The time-series validation of the multiple regression 
model using R7 showed that the model represented the dis-
charge reasonably well (Fig. 5), presenting a skill of 0.92, 
CD of 0.64, and RMSE of 108.68 m3 s-1. The modeled time 
series reflected the main discharge patterns, including the 
peaks observed in January and June, as well as the lowest 
values present in the observations. Notably, the seasonal 
patterns were also present in the reconstructed time series 
(Fig. 5).

The best model results were produced by the RVT-con-
sidering model, using the highest correlation coefficient 
between each rainfall grid cell of MERGE and the discharge 

time series. The maximum correlation coefficients (Fig. 6a) 
were found between 6 and 9 days of accumulated rainfall 
(called R6 and R9, respectively) (Fig. 6b).

The average standard error of RVT was 0.009. For all 
MERGE grid cells, the standard error was lower than 0.03, 
with the exception of two grid cells in the southern region 
of the watershed, showing that the errors associated with 
the regression were low (Fig. S5-a). The p-values were 
lower than 0.05 for 33% of the grid points, or 73 grid points 
(Fig. S5-b).

For the time-series validation, we found a skill of 0.92, 
CD of 0.67, and RMSE of 106.35 m3 s-1 (Fig. 7). The mod-
eled time series reflected both the main patterns of and sea-
sonal variability in the data (Fig. 7), similar to the previously 
tested multiple regression model (Fig. 5).

The results obtained for both multiple regression models 
were similar. The modeled VGC discharge was better rep-
resented in the multiple regression estimates (Fig. 4) than in 
the linear, quadratic, and exponential simulations (Figs. S2 
and S3). All models underestimated discharge values higher 
than 1000 m3 s-1, with the best results provided by the MLR 
models.

Fig. 5   VGC discharge time 
series produced by the MLR 
model using R7 (in black) 
and estimated by the method 
proposed by GEOBRÁS (1966) 
(in red)

Fig. 6   (a) Maximum correlation coefficient at each grid cell using R on X days, according to panel (b). (b) Number of days of accumulated rain-
fall used to detect the highest correlation coefficients in panel (a)
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3.3 � Model comparison

In this section, we evaluate all model results using the test 
subset and time-series validations. Table 1 shows the skill, 
coefficient of determination (CD), and RMSE values derived 
in the test subset validation. Table 2 shows the results of 
the time-series validation for all models, including the skill, 
coefficient of determination, RMSE, Pearson’s correlation 
coefficient, and the Nash–Sutcliffe efficiency (NSE) values.

In the test subset validation, the skill values were above 
0.8 in all cases, with the highest values corresponding to 
0.91 for the MLR models (Table 1). The CDs of the linear, 
quadratic, and exponential models showed values of approx-
imately 0.5, and the RMSE values were between approxi-
mately 122 m3 s-1 and 125 m3 s-1 (Table 1). For the test 
subset validation of the MLR models, the CD values were 
equal to 0.71 and 0.70, and the RMSE values were equal to 
107.05 m3 s-1 and 104.34 m3 s-1 for the R7 and RVT models, 
respectively (Table 1).

From the time-series validation results, we found a skill 
of approximately 0.83, CDs between 0.54 and 0.57, RMSEs 

from 136 to 142 m3 s-1, and Pearson’s correlation coefficients 
between 0.73 and 0.77 for the linear, quadratic, and expo-
nential models (Table 2). For both MLR models, we found 
a skill of 0.92 for the time-series validation (Table 2). In 
this validation, the CD values were equal to 0.64 and 0.67, 
the RMSE values were 108.68 m3 s-1 and 106.35 m3 s-1, 
and Pearson’s correlation coefficients were 0.85 and 0.86 for 
the MLR models using R7 and RVT, respectively (Table 2). 
Pearson’s correlation coefficients of the 5 models presented 
p-values lower than 0.01.

The NSE index presented an improvement of up to 28% 
for the multiple regression models when compared to the 
linear, quadratic, and exponential models. The highest NSE 
index was equal to 0.75, which was found for the multiple 
regression model using RVT (Table 2). The multiple regres-
sion model using R7 presented an NSE index of 0.74, while 
the linear, quadratic, and exponential models presented NSE 
indices equal to 0.54, 0.56, and 0.57, respectively (Table 2).

Figure 8 clearly shows that all of the regression mod-
els underestimate high flows, and either underestimate 
or overestimate the extreme low flows. However, statis-
tical analysis in this study still shows that these models 
present very good estimates, even for extreme events 
with differences, in these cases, that do not exceed 22%. 
Comparing the QQplot derived for each model, the data 
quantiles were better reproduced by the MLR models 
considering R7 and RVT (Fig. 8d and e, respectively) than 
by the linear, quadratic, and exponential models (Fig. 8a, 
b, and c, respectively). The linear, quadratic, and expo-
nential models were able to effectively represent VGC 
discharge values between 250 and 600 m3 s-1, with the 
model results closely coinciding with the perfect-fit lines 
(in red) in the QQ plots (Fig. 8a, b, and c). Increased river 

Fig. 7   (a) VGC discharge time 
series provided by the multiple 
linear regression model using 
accumulated rainfall RVT (in 
black) and estimated by the 
method proposed by GEOBRÁS 
(1966) (in red). (b) Magnified 
view for the period indicated by 
the black box in (a). The multi-
ple regression model using RVT 
presented a skill of 0.92, CD of 
0.67, and RMSE of 106.35 m3 
s-1 and therefore satisfactorily 
represented the data

Table 1   Skill, coefficient of determination (CD), and RMSE (m3 s-1) 
values derived in the test subset validations of the linear, quadratic, 
and exponential models

Model Skill CD RMSE (m3 s-1)

Linear 0.83 0.51 125.26
Exponential 0.81 0.52 124.26
Quadratic 0.82 0.53 122.66
Multiple linear regression (R7) 0.91 0.71 107.05
Multiple linear regression (RVT) 0.91 0.70 104.34
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discharge (>600 m3 s-1) is associated with a degradation 
of the results of these models, as the models tended to 
underestimate peak values, presenting RMSEs varying 
from 136 to 141 m3 s-1 at discharge values above 600 
m3 s-1. This limitation was more evident in the compari-
son between the modeled and observed VGC discharge 
time series (Figs. S3) but was reduced in the multiple 
regression models (Fig. 8d and e), which exhibited bet-
ter agreement between the model results and data during 
high-flow events above 600 m3 s-1, with RMSE values of 
106.30 m3 s-1 and 103.70 m3 s-1 for the MLR models con-
sidering R7 and RVT, respectively. These results indicate 
improvements between 22 and 27% for the MLR models 
compared to the previous ones. The multiple regression 
models fit the data well at discharge values between 240 

and 900 m3 s-1 (Fig. 8d and e). In these cases, values 
lower than 240 m3 s-1 and above 900 m3 s-1 were overes-
timated and underestimated, respectively, and generally 
increased with the discharge amount. Nevertheless, these 
underestimations detected in the multiple regression 
models were lower than those in the linear, quadratic, 
and exponential models, showing the clear improvement 
of the multiple regression models compared to the other 
cases. A specific period of the VGC discharge time series 
containing high and low peaks predicted by the models 
(Fig. S8-a and S8-b, respectively) indicated that the mul-
tiple regression model using RVT better reproduced the 
discharge data than the other models. Both MLR models 
presented satisfactory results and could thus be used to 
predict good VGC discharge estimates.

Table 2   Results of the time-series validation. The skill score, coeffi-
cient of determination (CD), RMSE (m3 s-1), and Pearson’s correla-
tion coefficient values between each model result and the discharge 

time series estimated for the Valo Grande using the method proposed 
by GEOBRÁS (1966) from 2011 to 2019 are shown

Model Skill CD RMSE (m3 s-1) Pearson’s correlation and 
p-value

Nash–Sutcliffe 
efficiency (NSE) 
index

Linear 0.84 0.54 141.61 0.73 – <0.01 0.54
Exponential 0.84 0.57 136.38 0.77 – <0.01 0.57
Quadratic 0.83 0.56 137.63 0.76 – <0.01 0.56
Multiple linear regression (R7) 0.92 0.64 108.68 0.85 – <0.01 0.74
Multiple linear regression (RVT) 0.92 0.67 106.35 0.86 – <0.01 0.75

Fig. 8   QQ plots for all investigated models, including (a) the linear model, (b) the exponential model, (c) the quadratic model, (d) the MLR 
model considering R7, and (e) the MLR model considering RVT



	 P. Birocchi et al.

1 3

3.4 � Reconstruction of complete time series 
and seasonal comparisons (2000–2020)

Based on the results of the previous sections, the MLR 
model considering RVT presented the most accurate predic-
tions. Thus, we applied this model to predict a complete time 
series of VGC discharges (Fig. S6). Since the MERGE data 
start in June 2000, the time series spans from this month 
until December 2020 (Fig. S6).

The seasonal precipitation patterns in the Ribeira de 
Iguape watershed and this reconstructed VGC discharge 
series were evaluated by the monthly averages considering 
a 95% confidence level (Fig. 9). The monthly mean rain-
fall from the MERGE dataset presented the highest values 
from October to March (Fig. 9a), varying from 130 mm (in 
November), with a confidence interval from 111 to 149 mm, 
to 241 mm (in January), with a confidence interval from 
approximately 74 to 133 mm. The highest mean rainfall and 
discharge values occurred in January (241 mm and 582 m3 
s-1, respectively), and the lowest values occurred in August 
(66 mm and 325 m3 s-1, respectively), considering the period 
from 2000 to 2020 (Fig. 9). From April to July, the rainfall 
and VGC discharge values presented relatively small varia-
tions, oscillating between 88 and 93 mm, and between 342 
and 368 m3 s-1, respectively (Fig. 9). These values began 
increasing in September, with monthly mean values of 100 

mm and 380 m3 s-1, within confidence intervals of approxi-
mately 74 to 133 mm, and 370 to 390 m3 s-1, for rainfall 
and VGC discharge, respectively, achieving their maximum 
peaks in January.

Basically, the seasonal variability present in rainfall mod-
ulated its variability in the VGC discharge results. Both the 
rainfall and VGC discharge series presented seasonal varia-
bilities, with the highest values found in summer (December, 
January, and February) and in March, with values greater 
than 150 mm and 470 m3 s-1, respectively. The lowest values 
were found in winter (June, July, and August), at 89 mm and 
365 m3 s-1, with the lowest values found in August, at 66 
mm and 325 m3 s-1 for rainfall and discharge, respectively 
(Figs. 3 and 9).

The highest variabilities were observed in September, 
January, and July, with confidence intervals ranging from 
74 to 133 mm, from 211 to 270 mm, and from 61 to 117 
mm, respectively (Fig. 9a). For the monthly mean VGC dis-
charge values (Fig. 9b), the confidence intervals ranged from 
111 to 149 m3 s-1 in October and from 560 to 603 m3 s-1 in 
January. From March to November, the monthly mean VGC 
discharge values presented lower variabilities than those in 
December, January, and February, showing confidence inter-
val range values in October from 383 and 405 m3 s-1 and in 
June from 350 to 380 m3 s-1. During December, January, 
and February, the confidence intervals ranged from 420 to 

Fig. 9   (a) Monthly mean rainfall (orange bars) and 95% confidence 
interval (black vertical lines) for the Ribeira do Iguape watershed 
using the MERGE data recorded from June 2000 to December 2020. 
(b) Monthly mean VGC discharge (blue bars) and 95% confidence 

interval (black vertical lines) from June 2000 to December 2020. 
These results were generated from the multiple regression model con-
sidering RVT

Fig. 10   Monthly mean VGC 
discharge and standard devia-
tion (black vertical lines) values 
of the VGC discharge series 
estimated using the GEOBRÁS 
(1966) method (orange bars) 
and with the multiple regression 
model considering RVT (blue 
bars) from 2011 to 2019
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453 m3 s-1, 560 to 603 m3 s-1, and from 481 to 520 m3 s-1, 
respectively (Fig. 9b).

The climatology of the VGC discharge was computed 
using the daily discharge estimates obtained with the mul-
tiple regression model considering RVT. These results 
were compared to the monthly mean VGC discharge data 
obtained from the daily discharge data available from 2011 
and 2019 (Fig. 10). For this period, when comparing the 
monthly mean VGC discharges between the multiple regres-
sion model considering RVT and the data, we found a skill 
of 0.96, RMSE of 51.61 m3 s-1, and Pearson’s correlation 
coefficient of 0.95 (with a p-value smaller than 0.01). There-
fore, the VGC discharge monthly means were well correlated 
with the monthly means obtained with the multiple regres-
sion model considering RVT (Fig. 10), allowing us to extend 
the climatological period to the period in which MERGE 
data are available. The highest monthly mean values were 
found during January in both data and modelled series, at 
570 m3 s-1 and 530 m3 s-1, respectively (Fig. 10). The low-
est values were detected during September and reached 280 
m3 s-1 and 300 m3 s-1 in the data and model series, respec-
tively (Fig. 10). The best fit between the data and modelled 
monthly means occurred in November, followed by in June 
and August (Fig. 10). From January to April, and also in 
July, the model predictions showed smaller values than the 
data, while during May, August, September, October, and 
December, the model overestimated the discharge values 
compared to the VGC data (Fig. 10). The standard deviation 
values were similar between the data and multiple regres-
sion model considering RVT (Fig. 10). The highest standard 
deviations were found in January (from approximately 250 
to 850 m3 s-1) and June (from approximately 180 to 750 m3 
s-1), followed by in February and August, which presented 
values between 260 and 720 m3 s-1 and between 90 and 550 
m3 s-1, respectively (Fig. 10).

High anomalous values were detected from 2011 to 2019 
in June (Fig. 10). Curiously, during this period, June pre-
sented higher monthly mean values (approximately 450 
m3 s-1) than May and July (approximately 340 m3 s-1 and 
320 m3 s-1, respectively) (Fig. 10). In addition, this pattern 
contrasted the observed monthly mean June discharge from 
2000 to 2010 and in 2020 (Fig. 11). This was the result of the 
high daily variability (Fig. S7) and the presence of discharge 
peaks in the VGC discharge during June in 6 of the 9 years 
from 2011 to 2019 (Fig. S7). These anomalous discharge 
values in June were caused by the high precipitation in the 
same period, which followed a consistent pattern starting 
in 2012 and followed by 2013, 2014, 2016, 2017, and 2019 
(Fig. S7). These June anomalies were also found by Marta-
Almeida et al. (2021) but were not investigated further in 
this work, as the topic was out of the scope of this study.

In addition, we presented the monthly mean values 
from 2000 to 2020 in the predicted time series using daily 

estimates from the multiple regression model considering 
RVT and from 2011 to 2019 compared to the observed VGC 
discharges from the DAEE (Fig. 11). The VGC discharge 
values estimated from the DAEE data from 2011 to 2019 
(orange bars in Fig. 11l to t) were effectively represented by 
the multiple regression model considering RVT (blue bars 
in Fig. 11l to t). Twelve of 20 years presented the highest 
monthly mean VGC-modeled discharge values in January, 
varying from approximately 340 to 850 m3 s-1 (Fig. 11). 
The highest monthly VGC discharge values occurred dur-
ing summer (considering January, February, and March), 
detected in 2001, 2006, 2007, 2011, 2016, 2017, and 2018 
(Fig. 11b, g, h, l, q, r, and s, respectively). In December, 
high VGC discharge values were also noticed in 2001, 2007, 
2008, 2010, 2015, and 2020, varying from 400 to 850 m3 s-1 
(Fig. 11b, h, i, k, p, and u, respectively). The lowest values 
were detected during winter (June, July, and August) only 
in 2002, 2006, and 2010 (Fig. 11c, g, and k, respectively).

High standard deviation values varying from approxi-
mately 300 to 700 m3 s-1 were detected in the climatology 
for June, July, and August (winter) (Fig. 10). These variabili-
ties were detected due to highly anomalous VGC discharge 
values mainly in June. This was evident in 2012, 2013, 
2014, 2016, 2017, and 2019 (Fig. 11m, n, o, q, r, and t, 
respectively); in some cases, discharge values similar or even 
superior to the summer-month values were achieved. Such 
a finding clearly occurred in June of 2012 (Fig. 11m) and 
2019 (Fig. 11t), when the VGC discharge values reached 750 
m3 s-1 and 610 m3 s-1, respectively. In June, we also detected 
high standard deviations with average values for this month, 
at 295 m3 s-1 and 190 m3 s-1 for the model results and data, 
respectively. Anomalous VGC discharge values were also 
detected in August 2011, reaching 700 m3 s-1 and 600 m3 s-1 
for the data and model results, respectively (Fig. 11l). The 
highest standard deviations were found in December, Janu-
ary, and February, with average values reaching 297 m3 s-1 
and 274 m3 s-1 (in January) for the model results and data 
(Fig. 11), respectively.

4 � Discussion

4.1 � Accumulated rainfall

The good coherence values between R7 and the VGC dis-
charge peaks (Fig. 3) and the maximum correlation found 
between these terms (Fig. S1) allowed us to use R7 as the 
input for the linear, quadratic, exponential, and multiple lin-
ear regression considering RFT models. We also applied R 
as a spatially and temporally varying field (RVT) in one of 
the multiple regression models. The idea of using accumu-
lated rainfall as a single input was to produce simple and 
reliable statistical models for predicting discharge. Since 
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Fig. 11   Modeled monthly mean VGC discharge (in blue) series 
derived from MERGE rainfall data recorded from 2000 to 2020 and 
the (in orange) monthly mean VGC discharge series estimated with 

DAEE data from 2011 to 2019, separated by year and month, includ-
ing the standard deviation for each month (black vertical lines)
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accumulated precipitation was the only input of these mod-
els, these data were essential for this study and controlled 
all the results. Ribeira de Iguape is a catchment with no 
dams (CBH-RB 2008; IBAMA 2016), in which the rainfall 
directly influences the unhindered river discharge. This rain-
fall/river relationship with no human intervention makes our 
methodology feasible. A decrease in the freshwater contribu-
tion from the Jaguaribe River was detected due to the inten-
sification of dam construction along this catchment (ANA 
2008; Dias et al. 2013). The performance and outputs of the 
analyzed models are discussed in the next paragraphs.

A similar pattern of coincident peaks at subseasonal 
scales was also detected between the rainfall and runoff 
data in the HBV rainfall-runoff model (Bergström 1976) 
at the Leaf River catchment in MS, USA, with high rain-
fall events being associated with peaks in the runoff time 
series (Abebe et al. 2010). In this case, seasonal fluctua-
tions in both rainfall and runoff time series were detected 
similarly to our results. Although these series exhibited 
comparable seasonal variations, it is important to men-
tion that because they are different river basins located 
in opposite hemispheres, the periods of highest (and low-
est) values are expected to differ and, therefore, exhibit 
distinct peak occurrences. For the Leaf River catchment, 
the highest values were observed between April and June. 
The performance and outputs of the analyzed models are 
discussed in the next sections.

Melesse et al. (2003) adopted distributed rainfall data 
in an empirical rainfall-runoff model, but considered only 
a sparse network of rain gauge stations. The authors stated 
that accurate rainfall data for the catchment is very criti-
cal to predict the stream flow and they recommend the use 
of spatially distributed rainfall data. Rainfall spatial dis-
tribution using four gauge stations was obtained by Kim 
et al. (2003) who applied a storm runoff model. There 
was a limitation of using only four gauge stations and 
other rainfall detection methods, such as radar techniques, 
are suggested to better represent spatial variations for the 
whole catchment (Kim et al. 2003). Spatially distributed 
rainfall together with other parameters (roughness and 
land cover) was also used by Melesse and Graham (2004) 
to predict the storm runoff. However, the authors consid-
ered a fixed period (5 days) to estimate the accumulated 
rainfall in each grid cell, differing from our methodology 
in which we calculated the accumulated rainfall with the 
number of days varying in the domain. Moreover, Melesse 
and Graham (2004) owned a temporal sparse data, and not 
a complete rainfall time series as we did. Other studies 
applied empirical rainfall-runoff models using the rainfall 
with time lags (Sarkar and Kumar 2012, Lohani et al. 
2014, Ahani et al. 2018, Dariane and Azimi 2018). An 
empirical model was developed by Lohani et al. (2014) 
with a 16-h lag rainfall data implemented as the input. 

Sarkar and Kumar (2012) adopted the rainfall with lags 
varying from 0 to 22 h as input in an ANN empirical 
model to simulate the runoff in the catchment of Ajay 
river (India). Moreover, Sarkar and Kumar (2012) and 
Ahani et al. (2018) used a single station with available 
rainfall data, and Lohani et al. (2014) obtained the spa-
tially averaged rainfall, not considering the data distri-
bution and variability in the catchment area, as we are 
considering in our multiple linear regression models.

4.2 � Regression models

Peak values (both high and low) are better represented in 
the MLR models considering R7 and RVT than in the linear, 
quadratic, and exponential models and are especially well-
represented by the RVT-considering model. In general, the 
modeled VGC discharge presented RMSE values between 
15 and 17% lower (Fig. 4) than those output by the pre-
vious models (Fig. S2); however, discharge values higher 
than 1000 m3 s-1 continued to be underestimated (Fig. 4). 
A possible explanation is that MERGE underestimates the 
rainfall peaks when compared with the TRMM satellite data 
(Rozante et al., 2010). In other words, more realistic data 
input to our regression model is likely to enhance the results. 
Such under representations limit the regression models for 
flood studies and very low flow conditions. This underes-
timation was also detected in a rainfall-runoff empirical 
FFBP model applied in the Linbien River (Taiwan) (Chen 
et al. 2013). These findings have also been reported for more 
sophisticated models, such as ANNs models, including feed 
forward back propagation (FFBP), radial basis function-
based (RBF), and generalized regression neural networks 
(GRNN) models, and in an MLR model (Cigizoglu and Alp 
2004). Nevertheless, these models were capable of repro-
ducing the runoff observations with reasonable MSE values 
varying from 40 to 105 m6 s-2 (Cigizoglu and Alp 2004). 
The FFBP, RBF, and MLR models generated similar MSE 
values, showing that MLR models can produce results as 
accurate as ANN model results (Cigizoglu and Alp 2004). 
The underestimation of high-flow occurrences by the mod-
els developed here (Fig. 8) was also detected by Kratzert 
et al. (2018) for both RNN and LSTM models, although 
the LSTM model outperformed the RNN model. Neverthe-
less, this LSTM model was capable of reproducing seasonal 
patterns and fluctuations, similar to our R7 and RVT regres-
sion models. It is important to mention that Kratzert et al. 
(2018) used three different datasets that consisted of 7 differ-
ent meteorological variables (the day length, precipitation, 
shortwave downward radiation, maximum and minimum 
temperature, snow-water equivalent, and humidity) as inputs 
to the LSTM model, while our results used only rainfall as 
an input and obtained similar NSE coefficients for the R7 
and RVT regression model results. This evidence shows that 
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we have implemented much simpler models, with a unique 
input, with the same robustness in predicting the runoff of a 
catchment as the LSTM model.

Comparing the p-values and the coefficient values 
obtained in the multiple linear regression models (Fig. S4 
and Fig. S5), we observed that the grid points with coef-
ficient magnitude higher than 0.025 were significant (with 
p-value < 0.05). For grid points where the coefficient magni-
tude was lower than 0.01, the p-value was higher than 0.05, 
showing that these grid points were not significant for the 
multiple linear regression model results. This explains the 
high p-values obtained in the domain (Fig. S4 and Fig. S5). 
Excluding these no significant grid points (with p-value 
> 0.05) from the model results, generated a very similar 
time series for the VGC discharge, with RMSE differences 
of 0.05% in relation to our results, showing no significant 
differences. It can be explained by the fact that the errors 
probably are compensating each other over the domain. The 
p-values were satisfactory, as the models were capable of 
reasonably reproducing the complete time series for the 
VGC discharge, the main information that we were inter-
ested in.

Both MLR models presented here reproduced the sea-
sonal fluctuations present in the runoff data (Figs. 5 and 7). 
The highest runoff peaks were detected during the summer 
months and in June during some years. Both low- and high-
flow events were well-represented by these models (Figs. 5 
and 7), especially the model considering RVT (Fig. 7b). In 
the RVT model, the field of the maximum correlation coef-
ficient was not equally distributed throughout the catchment 
(Fig. 6) because precipitation is not homogeneous across this 
domain (Fig. 2). The maximum correlation was associated 
with R8 and R9 in the southern portion, while in the north-
ern part, the maximum correlation was associated with R6 
and R7. These spatial patterns show that the water associ-
ated with precipitation in the southern region takes a longer 
time (~8–9 days) to reach the VGC than the water derived 
from rain in the northern area (~6–7 days) (Fig. 6). These 
spatial differences are associated with the Ribeira de Iguape 
watershed topography (Fig. 1). The southern region presents 
higher topography, with elevation values ranging from 800 
to 1000 m and a maximum elevation of approximately 2000 
m. On the other hand, the northern region presents lower 
topography, with flatter terrain ranging in elevation from 1 to 
100 m (Fig. 1). A catchment with abrupt topography usually 
presents more permeable bedrock substrates and usually has 
a larger water storage capacity than a watershed with gen-
tler topography (Sayama et al. 2011). Therefore, an abrupt-
topography catchment can sustain lower streamflow respon-
siveness to precipitation (e.g., Sayama et al. 2011; Wang 
et al. 2018; Jiang et al. 2012; Muñoz-Villers and McDonnell 
2013). Our results are consistent with the findings of pre-
vious studies, showing a lower streamflow responsiveness 

to precipitation in the southern region (steeper topography) 
of the watershed compared to the northern region (flatter 
topography) (Fig. 1).

Among the analyzed models, the temporally varying 
multiple regression model (RVT) was the most reliable in 
predicting the discharge time series in the Ribeira de Iguape 
watershed (Table 2), outperforming the other models. This 
was a consequence of employing all available spatial infor-
mation of MERGE over the watershed when computing 
the multiple regression models, in contrast with the linear, 
exponential, and quadratic regression models, which used 
only the time series of average spatial precipitation. The 
skill values of the multiple regression model results were 
approximately 10% higher than those of the other models. 
The CDs of the multiple regression models also increased 
by at least 18% relative to the other models. The RMSE was 
reduced by at least 30 m3 s-1 and Pearson’s correlation coef-
ficient increased by 16% when applying the multiple regres-
sion models. Both multiple regression models presented the 
highest skill among the models (0.92). However, the RVT 
regression model results were marginally better, presenting 
a CD of 0.67, RMSE of 106.35 m3 s-1, and Pearson correla-
tion of 0.86 (p-value<0.01) compared to the R7 regression 
model results, with a CD equal to 0.64, RMSE of 108.68 m3 
s-1, and Pearson correlation of 0.85 (p-value <0.01). Higher 
CD and lower RMSE values, varying from 0.76 to 0.83 and 
from 0.5 to 2.5 m3 s-1, respectively, were estimated for the 
Jhelum catchment in India (Dar 2017). These results could 
be associated with the area of this catchment (~8600 km²), 
which is almost three times smaller than that of the Ribeira 
de Iguape catchment.

NSE coefficients above 0.74 were found for the MLR 
models, which increased their performance compared to the 
other models and showed the robustness of the R7 and RVT 
regression models (Table 2). Comparable NSE coefficients 
were found using the SWMM model at the Belo Horizonte 
catchment (NSE equal to 0.72, Rosa et al. 2020) and in the 
Taquari-Antas basin at Rio Grande do Sul, Brazil (NSEs 
varying from 0.40 to 0.84, Collischonn et al. 2007). Simi-
lar NSE coefficients with mean and median values of 0.68 
and 0.72, respectively, were also obtained for 241 catch-
ments from the CAMELS dataset using the long short-term 
memory (LSTM) network, a special type of recurrent neural 
network (Experiment 3 in Kratzert et al. 2018).

The Ribeira de Iguape catchment is the main source 
(60%) of freshwater on the southeastern coast of Brazil 
(Afonso 2006; Marta-Almeida et al. 2021) and therefore 
strongly influences the salinity in the South Brazil Bight due 
to the freshwater flowing through the VGC. A discharge time 
series was produced for the Valo Grande Channel for the 
period from 2000 to 2020 resulting from the most reliable 
model (Fig. S6). In the time-series results, two moments pre-
sented negative discharges, which is physically impossible. 
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This is a limitation of the model and should thus be consid-
ered depending on the model application (Fig. S6). Never-
theless, negative flow estimations were also detected in other 
rainfall-runoff models, including RBF neural networks and 
MLR models (Cigizoglu and Alp 2004). With the predicted 
time series, we qualitatively provided and validated the 
monthly mean discharge (Fig. 10) and presented the monthly 
climatology obtained for the VGC discharge (Fig. 11).

The resulting RMSE values found for our MLR models 
were at least 50% lower than the RMSE values of a similar 
rainfall-runoff model applied for the Madhya Pradesh water-
shed in India (Patel et al. 2016). Our MLR models presented 
similar NSE and correlation coefficient values compared to 
the most reliable LSTM model developed by Xiang et al. 
(2020). Our results were also consistent with those of other 
rainfall-runoff models. As a comparison, the semidistributed 
HBV-96 version conceptual model (Lindström et al. 1997) 
presented R2

V (Lindström 1997) values ranging from 0.6 to 
0.8. In addition, our NSE values derived for the MLR mod-
els were higher than the NSE values found in 604 basins in 
the USA using a coupled Snow-17 snow model and the Sac-
ramento Soil Moisture Accounting Model (Newman et al. 
2015). For the calibration period, 90% (604) of 671 basins 
showed NSE values greater than 0.55, and in 34% (225) of 
the basins, the model provided NSEs higher than 0.8 (New-
man et al. 2015).

The monthly mean rainfall information from the MERGE 
dataset presented the highest values from October to March 
(Fig. 9a), which is consistent with the period described by 
Carvalho et al. (2018). The maximum river discharge dur-
ing summer for the Ribeira de Iguape can be explained by 
the rainfall distribution in this region (Carvalho et al. 2018). 
The VGC runoff follows this same pattern (Fig. 9b). Gener-
ally, from September to March, the river discharges between 
Florianópolis and Bertioga, including in Ribeira do Iguape, 
Paranaguá, Itapocú, and São João, are approximately twice 
as large as those in the drier months around July (Marta-
Almeida et al. 2021).

The seasonal variability is evident in the modeled VGC 
discharge (Fig. 11), with intense runoff events occurring 
in the summer, mainly in January and December (Fig. 11), 
with high standard deviation values varying from 300 to 
800 m3 s-1 in the climatology of December, January, and 
February (Fig. 10). Discharge peaks were also observed 
during winter (mainly in June, with some in August), with 
high standard deviation values varying from 300 to 700 m3 
s-1 in the climatology for June, July, and August (Fig. 10). 
These intense discharge events were associated with high 
rainfall events. In general, the highest discharge peaks were 
observed on 4 August 2011, at 2164 m3 s-1, followed by 
13 January 2016, at 1806 m3 s-1, and 1 January 2018, at 
approximately 1797 m3 s-1 (Fig. 11). Marta-Almeida et al. 
(2021) found that the highest peaks occurred in February, 

June, and December in 2014 but did not observe highest 
peaks in these months in other years (except for a low peak 
in July 2016). We observed peaks in February and June of 
2014 but not in December of 2014 (Fig. 11). The recon-
structed discharge time series and the monthly climatology 
presented here can be used in oceanic models to represent 
the discharge from the Ribeira de Iguape watershed system 
in estuarine and coastal hydrodynamic forecast and hind-
cast simulations. These applications should consider that, in 
general, the modeled discharge peaks present some under-
representation of reality, which might limit some studies 
related to extreme events.

5 � Concluding remarks

In this work, simple models based on MERGE rainfall data 
were shown to be capable of providing information about 
discharge in the Ribeira de Iguape watershed. We evaluated 
5 different models that use rainfall data from MERGE to pro-
vide discharge estimations for the VGC. We applied linear 
regression, quadratic, and exponential models and two dif-
ferent MLR models. In the first multiple regression model, R 
was estimated for 7 days (R7), and in the second model, the 
number of days used to compute R varied spatially (RVT); 
in addition, we calculated the standard errors and p-values 
for each grid cell from the MERGE precipitation data. The 
VGC discharge time series predicted by each model was 
compared with estimated discharges from data collected 
from the DAEE. Among the applied models, the multiple 
regression with RVT was the most accurate (RMSE of 103.70 
m3 s-1) and had the highest coefficient of determination (CD 
of 0.75), skill (0.92), and NSE (0.75) values. We attribute 
this better representation of the VGC discharge to this type 
of statistical model considering individual grid points from 
the MERGE rainfall data instead of using spatially aver-
aged rainfall, as the other models did. Moreover, the multiple 
regression model that considered RVT was more reliable than 
the regression that considered a constant period of accu-
mulation (R7). This finding is the result of the first model 
also considering varying days of accumulation based on the 
highest correlation value between the R and VGC discharge.

Discharge measurements are important for constructing 
and calibrating numerical models for oceanic predictions, 
leading to improved salinity fields and ocean dynamic simu-
lations in continental shelf and estuarine regions. The VGC 
discharge time series and the monthly climatology results 
presented here can be included in operational oceanic mod-
els at small and mesoscales in the region and can be used 
to calibrate numerical simulations. In addition, it is funda-
mental to estimate the dispersion of materials and pollutants 
through rivers and channels and to evaluate their impacts. 
The results presented here can also be used to investigate the 
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hydrodynamics in the CIELS and how pollutants and other 
substances are transported in this system.

The methodology presented here can be replicated in other 
watersheds around the world if sufficiently long training data-
sets are available. The models require as inputs precipita-
tion maps constructed over time for a given watershed. This 
information is used to set the MLR models. MLR can be 
considered a powerful statistical tool to generate highly sim-
ple and reliable rainfall-runoff models. Such an MLR model 
can provide similar results compared to ANN models, such 
as FFBPNN and GRNN models (Turhan 2021). MLR models 
have also presented similar results as ANN models when 
applied together with wavelet transformation (Partal 2017).

The models applied in this study presented some limi-
tations, particularly regarding the detection of high and 
extremely low flows, which relates to the input data limi-
tations itself (MERGE). However, the underestimation of 
peaks detected in our models is also present in more sophis-
ticated models, as ANN models (Cigizoglu and Alp 2004, 
Chen et al. 2013). Although we detected grid cells with no 
significance in the multiple linear regression models, their 
presence did not impact our final results. The main advan-
tage of the applied methods was to provide a reasonable 
estimate of river discharge for a period when there were 
no measurements. Some other advantages were providing a 
spatial distribution (map) for the variables in the model and 
also a continuous time series of the discharge. As a future 
work, regression models for each of the discharge gauging 
locations (Jacupiranga, Ribeira do Iguape, and Pariquera-
Açu) can be developed for comparison and validation.
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